Email: tuitionclass.primz@gmail.com ## **Pure Chemistry Intensive: Organic Chemistry** #### Fractional Distillation of Crude Oil / Petroleum Process of Fractional Distillation of Crude Oil: 1. _____ the crude oil in the _____ 2. Pass the vapour through the _____ (**Different boiling point allows crude oil to separate into different fractions.) | Fractions of Crude Oil | Uses | |------------------------|----------| | P | Fuel for | | P | Fuel for | | N | | | K/P | Fuel for | | D | Fuel for | | L | | | В | | Email: tuitionclass.primz@gmail.com ## **Pure Chemistry Intensive: Organic Chemistry** ## **Understanding Organic Chemistry** | Keywords | Definitions/ Remarks | |--------------|---| | | | | Hydrocarbons | Molecules that are made up of and only. | | Homologous | Family of organic compounds that have | | Series | 1. the same | | | 2. the same | | | Each consecutive members differ by | # **Physical Trends of Organic Compounds** As the number of carbon atoms increases, | Melting & boiling point | Intermolecular forces between molecules become stronger | |-------------------------|---| | Volatility | | | Viscosity | | | Flammability | Harder to achieve complete combustion | | Density | More atoms are present per unit volume | Email: tuitionclass.primz@gmail.com # Pure Chemistry Intensive: Organic Chemistry ## Structures of Alkanes & Alkenes | | Alkanes | Alkenes | |--------------------|--------------------------|---------| | General Formula | | | | Functional Group | | | | 1 Carbon
(meth) | | | | | Methane, CH ₄ | | | 2 Carbon
(eth) | | | | 3 Carbon
(prop) | | | | 4 Carbon
(but) | | | **Other Prefixes:** Address: Primz Bizhub Tel: 9225 5217 / 8892 8513 Email: tuitionclass.primz@gmail.com # Pure Chemistry Intensive: Organic Chemistry | Keywords | Definitions/ Rema | arks | | |------------------------|---|--------------------|---------------------| | Unsaturated | | | | | Isomers | Organic compounds with same formula but different formula | | | | lsomers: | | | | | | | Isomers of butene | | | <u>Straight-chain:</u> | | <u>Branched:</u> | <u>Cycloalkane:</u> | | | | Isomers of pentene | | | <u>Straight</u> - | chain: | <u>Branched:</u> | <u>Cycloalkane:</u> | # Pure Chemistry Intensive: Organic Chemistry # **Reactions of Alkanes & Alkenes** | Alkane Reaction | Equations & Remarks | Conditions | |------------------|--|------------| | Combustion | | | | | | | | | Structural Equation | | | | | | | Reaction | | | | | | | | (Photochemical) | | | | (i notochemical) | | | | | | | | | | | | | | | | | Monochloromethane formed: CH₄ + CI₂ → CH₃CI + HCI | | | | 2 formed: $CH_3CI + CI_2 \rightarrow CH_2CI_2 + HCI$ | | | | 3 formed: $CH_2CI_2 + CI_2 \rightarrow CHCI_3 + HCI$ | | | | 4 formed: $CH_3CI + CI_2 \rightarrow CCI_4 + HCI$ | | | | 151111511 511351 512 | | | | Remarks: | | | | | | | | Forms CFCs (chlorofluorocarbons) that depletes ozone | | | | 2. Forms acid rain | | | | | | | | $C_{20}H_{42} \rightarrow _{} C_3H_6 + _{} C_2H_6$ | | | | Porcelain chips | | | | Porcelain crips | | | | Bunsen valve fits here if desired Product gas | | | | | | | | Mineral wool Hard-glass boiling tube | | | | soaked in liquid | | | | paraffin | | | | = To f- | | | | | | | | | | | | Purpose: | | | | To crack large hydrocarbons (e.g. bitumen) into smaller more useful | | | | hydrocarbons (e.g. petrol) | | | | 2. To produce hydrogen | | Email: tuitionclass.primz@gmail.com ## **Pure Chemistry Intensive: Organic Chemistry** | Addition Reactions: | Reaction where small molecules react with | organic molecules to form a | |---------------------|---|-----------------------------| | | product. | | | Alkene Reactions | Equations & Remarks | Conditions | |------------------|--|------------| | | $C_3H_6 + Br_2 \rightarrow \underline{\hspace{1cm}}$ | | | (Halogenation) | Structural Equation: | | | | Structural Equation. | | | | | | | | | | | | Test for unsaturated substance (alkenes): | | | | - Add 2 to 3 drops of aqueous bromine | | | | - If solution decolourises, substance | | | | is unsaturated. | | | | - If solution remains, substance is | | | | saturated. | | | | | | | | $C_2H_4 + H_2 \rightarrow \underline{\hspace{1cm}}$ | | | | Structural Equation: | | | | | | | | | | | | | | | | Remarks: | | | | To form margarine (saturated) from vegetable oil (unsaturated) | | | | | | | | $C_3H_6 + H_2O \rightarrow \underline{\hspace{1cm}}$ | | | | Structural Equation: | | | | | | | | | | | | | | | | Remarks: | | | | Formation of alcohol | | | | 1 difficulties of disortion | | Email: tuitionclass.primz@gmail.com ## **Pure Chemistry Intensive: Organic Chemistry** ## **Quick Exercise:** | (a) | State the conditions for process A to occur. | |-----|---| | | | | | | | (b) | Name the process B . | - (c) Suggest which hydrocarbon, **Q** or **R**, undergoes hydration reaction to form alcohol. - - (d) Suggest two differences in the chlorine reaction with **Q** and **R**. Email: tuitionclass.primz@gmail.com # **Pure Chemistry Intensive: Organic Chemistry** # Structures of Alcohol & Carboxylic | | Alcohol | Carboxylic Acid | |--------------------|-----------------|-----------------| | General Formula | | | | Functional Group | | | | 1 Carbon
(meth) | | | | | | | | | Methanol, CH₃OH | | | 2 Carbon
(eth) | | | | | | | | | | | | 3 Carbon
(prop) | | | | | | | | | | | | 4 Carbon
(but) | | | | | | | | | | | | | | | # **Pure Chemistry Intensive: Organic Chemistry** # **Alcohol & Carboxylic Acid Reaction** | Reaction | Equations & Remarks | Conditions | |-----------------------------------|---|------------| | | $C_3H_7OH + 2[O] \rightarrow C_2H_5COOH + H_2O$ Structural Equation: | | | | *Recap redox reaction | | | of glucose | glucose → ethanol + carbon dioxide Set-up: | | | Neutralisation of carboxylic acid | NaOH + CH₃COOH → CH₃COONa + H₂O sodium hydroxide + ethanoic acid → sodium ethanoate + water | | Address: Primz Bizhub Tel: 9225 5217 / 8892 8513 Email: tuitionclass.primz@gmail.com ## Pure Chemistry Intensive: Organic Chemistry |
CH ₃ OH + C ₂ H ₅ COOH → + H ₂ O Methanol + propanoic acid → | | |---|--| | Structural formula of ester: | | | | | | Uses of esters: | | # Quick Exercise: 1. Complete the table by writing the name, chemical formula and draw the structures of the organic substances. | Alcohol | Carboxylic Acid | Ester formed | |--|--|---| | Name: Formula: Structure: H H H H-C-C-C-C-O-H H H H | Name:
Formula: <u>HCOOH</u>
Structure: | Name: Propyl Methanoate Formula: Structure: | | Name: <u>Methanol</u> | Name: <u>Ethanoic acid</u> | Name: | | Formula: | Formula: | Formula: | | Structure: | Structure: | Structure: | | Name: <u>Ethanol</u> | Name: <u>Ethanoic Acid</u> | Name: | | Formula: | Formula: | Formula: | | Structure: | Structure: | Structure: | ## **Pure Chemistry Intensive: Organic Chemistry** #### **Quick Exercise** A complex organic compound **K** is as shown below: $$\begin{array}{c} \mathsf{H} \\ \mathsf{HO} - \overset{|}{\mathsf{C}} - \mathsf{C} = \mathsf{C} - \mathsf{COOH} \\ \mathsf{H} \quad \mathsf{H} \quad \mathsf{H} \end{array}$$ Given the reactions and/or conditions provided, draw the full structural formula of the organic product that is formed. | Reaction Name | Conditions | Full structural formula | |------------------------------------|-------------------------|--| | Bromination | | | | Oxidation | | | | | Nickel catalyst, 200 °C | | | Esterification with methanoic acid | | | | | | $\begin{array}{c} H \\ H \\ - O \\ - C \\ - C \\ - H \\ - H \end{array} - \begin{array}{c} O \\ - C \\ - C \\ - H \\ - C $ | Email: tuitionclass.primz@gmail.com | | Pure Chemistry Intensive: Organic Chemistry | |--|---| | Polymerisation: (Forming of | when monomers are reacted together.) | | Addition Polymerisation | | | Occurs when monomer units are covalently bonded without losing any molecules (or atoms). | | | Monomers | Polymers (2-repeat units) | Uses | |--------------|---------------------------|------| | | | | | | | | | | | | | Ethene | Poly(ethene) | | | | | | | | | | | | | | | Propene | Poly(propene) | | | | | | | | | | | | | | | Chloroethene | (PVC) | | ## **Quick Exercise:** Complete the table to show the structural formula of the respective monomers & polymers. | Monomer | Polymer | |---------------------|---------| | | | | HC=CCH ₃ | | ## **Pure Chemistry Intensive: Organic Chemistry** ## **Condensation Polymerisation:** Occurs when monomers are covalently bonded to form a large molecule with the removal of small molecules like water. | Monomers | Polymers (1-repeat unit) | Examples | |---------------------------------|--------------------------|-------------------| | | | Terylene | | | | (Synthetic fibre) | | | | - Clothing | | | | - Curtain | | Dicarboxylic acid | | - Fishing Line | | | | - Parachute | | | | - Sleeping bags | | | | | | Dial | | Fats | | Diol | | | | | | | | | | | | | | | | Monomer with hydroxyl group and | | | | carboxyl group | | | | Carboxyi group | Polyamide | Nylon | | | Folyaniide | (Synthetic fibre) | | | | - Clothing | | | | - Clothing | | | | - Fishing Line | | Digarhavadia acid | | - Parachute | | Dicarboxylic acid | | | | | | - Sleeping bags | | | | Proteins | | | | | | Diamine | | | | | | | | | | | | | | | | Monomer with hydroxyl group and | | | | carboxyl group | | | **Pure Chemistry Intensive: Organic Chemistry** ## **Quick Exercise:** A complex organic compound **K** is as shown below: $$\begin{array}{c} \mathsf{H} \\ \mathsf{HO} - \overset{|}{\mathsf{C}} - \mathsf{C} = \mathsf{C} - \mathsf{COOH} \\ \mathsf{H} & \mathsf{H} & \mathsf{H} \end{array}$$ (a) Draw a polymer with 2-repeat units when compound **K** undergoes addition polymerisation (b) Draw a polymer with 2-repeat units when compound **K** undergoes condensation polymerisation Email: tuitionclass.primz@gmail.com ## **Pure Chemistry Intensive: Organic Chemistry** | Addition Polymerisation | Condensation Polymerisation | |---|---| | No | produced
(e.g. H ₂ O or HC/) | | Only 1 functional group required | 2 functional groups are required | | Empirical formula is the same for both monomers and polymer | Empirical formula is not the same for monomers and polymers | | Monomers are unsaturated | Monomers might not be unsaturated | ## Advantages of Polymers (Plastics): - 1. Durable and long lasting - 2. Cheap - 3. Easily moulded into various shapes - 4. Waterproof # **Disadvantages of Polymers (Plastics):** - 1. Non-biodegradable (occupies space and causes land pollution) - 2. Burning of polymers release toxic gases Email: tuitionclass.primz@gmail.com #### Pure Chemistry Intensive: Organic Chemistry #### **Plastics** | Keywords | Definitions/ Remarks | |-------------------|---| | Non-biodegradable | A substance that cannot be broken down by the action of living organisms. | | | - Cannot decay naturally | | | - Cannot decay in a way that is not harmful to the environment | #### **Pollution Problems:** Effects on Biodiversity Effects on Human Health Address: Primz Bizhub Tel: 9225 5217 / 8892 8513 Email: tuitionclass.primz@gmail.com #### **Pure Chemistry Intensive: Organic Chemistry** #### **Physical Methods to Recycle Plastics:** | Steps | Details & Remarks | |-------------|---| | Collection | Plastics are collected | | Sorting | Plastics are sorted based on their respective RIC (Resin Identification Code) and colours. (*Only RIC 1, 2, 4 and 5 are recyclable.) | | Washing | Plastics are washed & cleaned. Debris & Contaminants are removed. | | Grinding | Plastics are crushed & shredded into flakes. Some are melted into pellets. | | Manufacture | Flakes or pellets are melted and moulded into new products. | # THE 7 TYPES OF PLASTICS # THEIR TOXICITY AND WHAT THEY ARE MOST COMMONLY USED FOR Top 5 Challenges in Plastics Recycling - Seastainable Email: tuitionclass.primz@gmail.com # Pure Chemistry Intensive: Organic Chemistry # **Chemical Methods to Recycle Plastics:** | Depolymerisation | Hydrolysis process in which polymers (i.e. polyesters) are broken down into their monomers | |------------------|---| | (Hydrolysis) | using acid as a catalyst. | | | $ \begin{pmatrix} 0 & 0 \\ \parallel & \parallel & \parallel \\ C - \square \square - C - O - \square - O \end{pmatrix}_{n} + 2n H_{2}O \xrightarrow{H^{+}} n H - O - C - \square \square - C - O - H + n H - O - \square - O - H $ | | | Method only applies to condensation polymers (polyesters & polyamide) | | Cracking | Process where polymers are heated in the absence of air at high temperatures and breaking | | (Pyrolysis) | it down to smaller hydrocarbon molecules. | | | Smaller hydrocarbons are separated by fractional distillation and used to make fuels & chemical feedstock. | | Extra: | Any thermal process that converts polymers into simpler molecules to form | | Feedstock | petrochemical-type processing (e.g. pyrolysis & gasification) | | Recycling | | # Challenges/Limitations in Plastic Recycling: | Economic | Recycling facilities require high capital and technical capability with government support. Cooperation from organisations to use easily-recyclable plastics may be difficult (due to cost, etc.) | |---------------|--| | Social | Difficulties in sorting: Not all plastics are recyclable, many products are made from multiple materials (e.g. phone is made from different plastics, metals and other materials such as silicon) Education required for the public in plastic recycling efforts. | | Environmental | Plastic production far exceeds recycling rates resulting in plastic landfills. Microplastics contamination cannot be eliminated with recycling efforts. |