

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Organic Chemistry

Fractional Distillation of Crude Oil / Petroleum

Process of Fractional Distillation of Crude Oil:

1. _____ the crude oil in the _____

2. Pass the vapour through the _____

(**Different boiling point allows crude oil to separate into different fractions.)

Fractions of Crude Oil	Uses
P	Fuel for
P	Fuel for
N	
K/P	Fuel for
D	Fuel for
L	
В	

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Organic Chemistry

Understanding Organic Chemistry

Keywords	Definitions/ Remarks
Hydrocarbons	Molecules that are made up of and only.
Homologous	Family of organic compounds that have
Series	1. the same
	2. the same
	Each consecutive members differ by

Physical Trends of Organic Compounds

As the number of carbon atoms increases,

Melting & boiling point	Intermolecular forces between molecules become stronger
Volatility	
Viscosity	
Flammability	Harder to achieve complete combustion
Density	More atoms are present per unit volume

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Organic Chemistry

Structures of Alkanes & Alkenes

	Alkanes	Alkenes
General Formula		
Functional Group		
1 Carbon (meth)		
	Methane, CH ₄	
2 Carbon (eth)		
3 Carbon (prop)		
4 Carbon (but)		

Other Prefixes:

Address: Primz Bizhub

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Organic Chemistry

Keywords	Definitions/ Rema	arks	
Unsaturated			
Isomers	Organic compounds with same formula but different formula		
lsomers:			
		Isomers of butene	
<u>Straight-chain:</u>		<u>Branched:</u>	<u>Cycloalkane:</u>
		Isomers of pentene	
<u>Straight</u> -	chain:	<u>Branched:</u>	<u>Cycloalkane:</u>

Pure Chemistry Intensive: Organic Chemistry

Reactions of Alkanes & Alkenes

Alkane Reaction	Equations & Remarks	Conditions
Combustion		
	Structural Equation	
Reaction		
(Photochemical)		
(i notochemical)		
	 Monochloromethane formed: CH₄ + CI₂ → CH₃CI + HCI 	
	2 formed: $CH_3CI + CI_2 \rightarrow CH_2CI_2 + HCI$	
	3 formed: $CH_2CI_2 + CI_2 \rightarrow CHCI_3 + HCI$	
	4 formed: $CH_3CI + CI_2 \rightarrow CCI_4 + HCI$	
	151111511 511351 512	
	Remarks:	
	Forms CFCs (chlorofluorocarbons) that depletes ozone	
	2. Forms acid rain	
	$C_{20}H_{42} \rightarrow _{} C_3H_6 + _{} C_2H_6$	
	Porcelain chips	
	Porcelain crips	
	Bunsen valve fits here if desired Product gas	
	Mineral wool Hard-glass boiling tube	
	soaked in liquid	
	paraffin	
	= To f-	
	Purpose:	
	To crack large hydrocarbons (e.g. bitumen) into smaller more useful	
	hydrocarbons (e.g. petrol)	
	2. To produce hydrogen	

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Organic Chemistry

Addition Reactions:	Reaction where small molecules react with	organic molecules to form a
	product.	

Alkene Reactions	Equations & Remarks	Conditions
	$C_3H_6 + Br_2 \rightarrow \underline{\hspace{1cm}}$	
(Halogenation)	Structural Equation:	
	Structural Equation.	
	Test for unsaturated substance (alkenes):	
	- Add 2 to 3 drops of aqueous bromine	
	- If solution decolourises, substance	
	is unsaturated.	
	- If solution remains, substance is	
	saturated.	
	$C_2H_4 + H_2 \rightarrow \underline{\hspace{1cm}}$	
	Structural Equation:	
	Remarks:	
	To form margarine (saturated) from vegetable oil (unsaturated)	
	$C_3H_6 + H_2O \rightarrow \underline{\hspace{1cm}}$	
	Structural Equation:	
	Remarks:	
	Formation of alcohol	
	1 difficulties of disortion	

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Organic Chemistry

Quick Exercise:

(a)	State the conditions for process A to occur.
(b)	Name the process B .

- (c) Suggest which hydrocarbon, **Q** or **R**, undergoes hydration reaction to form alcohol.
-
- (d) Suggest two differences in the chlorine reaction with **Q** and **R**.

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Organic Chemistry

Structures of Alcohol & Carboxylic

	Alcohol	Carboxylic Acid
General Formula		
Functional Group		
1 Carbon (meth)		
	Methanol, CH₃OH	
2 Carbon (eth)		
3 Carbon (prop)		
4 Carbon (but)		

Pure Chemistry Intensive: Organic Chemistry

Alcohol & Carboxylic Acid Reaction

Reaction	Equations & Remarks	Conditions
	$C_3H_7OH + 2[O] \rightarrow C_2H_5COOH + H_2O$ Structural Equation:	
	*Recap redox reaction	
of glucose	glucose → ethanol + carbon dioxide Set-up:	
Neutralisation of carboxylic acid	NaOH + CH₃COOH → CH₃COONa + H₂O sodium hydroxide + ethanoic acid → sodium ethanoate + water	

Address: Primz Bizhub

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Organic Chemistry

 CH ₃ OH + C ₂ H ₅ COOH → + H ₂ O Methanol + propanoic acid →	
Structural formula of ester:	
Uses of esters:	

Quick Exercise:

1. Complete the table by writing the name, chemical formula and draw the structures of the organic substances.

Alcohol	Carboxylic Acid	Ester formed
Name: Formula: Structure: H H H H-C-C-C-C-O-H H H H	Name: Formula: <u>HCOOH</u> Structure:	Name: Propyl Methanoate Formula: Structure:
Name: <u>Methanol</u>	Name: <u>Ethanoic acid</u>	Name:
Formula:	Formula:	Formula:
Structure:	Structure:	Structure:
Name: <u>Ethanol</u>	Name: <u>Ethanoic Acid</u>	Name:
Formula:	Formula:	Formula:
Structure:	Structure:	Structure:

Pure Chemistry Intensive: Organic Chemistry

Quick Exercise

A complex organic compound **K** is as shown below:

$$\begin{array}{c} \mathsf{H} \\ \mathsf{HO} - \overset{|}{\mathsf{C}} - \mathsf{C} = \mathsf{C} - \mathsf{COOH} \\ \mathsf{H} \quad \mathsf{H} \quad \mathsf{H} \end{array}$$

Given the reactions and/or conditions provided, draw the full structural formula of the organic product that is formed.

Reaction Name	Conditions	Full structural formula
Bromination		
Oxidation		
	Nickel catalyst, 200 °C	
Esterification with methanoic acid		
		$\begin{array}{c} H \\ H \\ - O \\ - C \\ - C \\ - H \\ - H \end{array} - \begin{array}{c} O \\ - C \\ - C \\ - H \\ - C $

Email: tuitionclass.primz@gmail.com

	Pure Chemistry Intensive: Organic Chemistry
Polymerisation: (Forming of	when monomers are reacted together.)
Addition Polymerisation	
Occurs when monomer units are covalently bonded without losing any molecules (or atoms).	

Monomers	Polymers (2-repeat units)	Uses
Ethene	Poly(ethene)	
Propene	Poly(propene)	
Chloroethene	(PVC)	

Quick Exercise:

Complete the table to show the structural formula of the respective monomers & polymers.

Monomer	Polymer
HC=CCH ₃	

Pure Chemistry Intensive: Organic Chemistry

Condensation Polymerisation:

Occurs when monomers are covalently bonded to form a large molecule with the removal of small molecules like water.

Monomers	Polymers (1-repeat unit)	Examples
		Terylene
		(Synthetic fibre)
		- Clothing
		- Curtain
Dicarboxylic acid		- Fishing Line
		- Parachute
		- Sleeping bags
Dial		Fats
Diol		
Monomer with hydroxyl group and		
carboxyl group		
Carboxyi group	Polyamide	Nylon
	Folyaniide	(Synthetic fibre)
		- Clothing
		- Clothing
		- Fishing Line
Digarhavadia acid		- Parachute
Dicarboxylic acid		
		- Sleeping bags
		Proteins
Diamine		
Monomer with hydroxyl group and		
carboxyl group		

Pure Chemistry Intensive: Organic Chemistry

Quick Exercise:

A complex organic compound **K** is as shown below:

$$\begin{array}{c} \mathsf{H} \\ \mathsf{HO} - \overset{|}{\mathsf{C}} - \mathsf{C} = \mathsf{C} - \mathsf{COOH} \\ \mathsf{H} & \mathsf{H} & \mathsf{H} \end{array}$$

(a) Draw a polymer with 2-repeat units when compound **K** undergoes addition polymerisation

(b) Draw a polymer with 2-repeat units when compound **K** undergoes condensation polymerisation

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Organic Chemistry

Addition Polymerisation	Condensation Polymerisation
No	produced (e.g. H ₂ O or HC/)
Only 1 functional group required	2 functional groups are required
Empirical formula is the same for both monomers and polymer	Empirical formula is not the same for monomers and polymers
Monomers are unsaturated	Monomers might not be unsaturated

Advantages of Polymers (Plastics):

- 1. Durable and long lasting
- 2. Cheap
- 3. Easily moulded into various shapes
- 4. Waterproof

Disadvantages of Polymers (Plastics):

- 1. Non-biodegradable (occupies space and causes land pollution)
- 2. Burning of polymers release toxic gases

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Organic Chemistry

Plastics

Keywords	Definitions/ Remarks
Non-biodegradable	A substance that cannot be broken down by the action of living organisms.
	- Cannot decay naturally
	- Cannot decay in a way that is not harmful to the environment

Pollution Problems:

Effects on Biodiversity

Effects on Human Health

Address: Primz Bizhub

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Organic Chemistry

Physical Methods to Recycle Plastics:

Steps	Details & Remarks
Collection	Plastics are collected
Sorting	Plastics are sorted based on their respective RIC (Resin Identification Code) and colours. (*Only RIC 1, 2, 4 and 5 are recyclable.)
Washing	Plastics are washed & cleaned. Debris & Contaminants are removed.
Grinding	Plastics are crushed & shredded into flakes. Some are melted into pellets.
Manufacture	Flakes or pellets are melted and moulded into new products.

THE 7 TYPES OF PLASTICS

THEIR TOXICITY AND WHAT THEY ARE MOST COMMONLY USED FOR

Top 5 Challenges in Plastics Recycling - Seastainable

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Organic Chemistry

Chemical Methods to Recycle Plastics:

Depolymerisation	Hydrolysis process in which polymers (i.e. polyesters) are broken down into their monomers
(Hydrolysis)	using acid as a catalyst.
	$ \begin{pmatrix} 0 & 0 \\ \parallel & \parallel & \parallel \\ C - \square \square - C - O - \square - O \end{pmatrix}_{n} + 2n H_{2}O \xrightarrow{H^{+}} n H - O - C - \square \square - C - O - H + n H - O - \square - O - H $
	Method only applies to condensation polymers (polyesters & polyamide)
Cracking	Process where polymers are heated in the absence of air at high temperatures and breaking
(Pyrolysis)	it down to smaller hydrocarbon molecules.
	Smaller hydrocarbons are separated by fractional distillation and used to make fuels & chemical feedstock.
Extra:	Any thermal process that converts polymers into simpler molecules to form
Feedstock	petrochemical-type processing (e.g. pyrolysis & gasification)
Recycling	

Challenges/Limitations in Plastic Recycling:

Economic	 Recycling facilities require high capital and technical capability with government support. Cooperation from organisations to use easily-recyclable plastics may be difficult (due to cost, etc.)
Social	 Difficulties in sorting: Not all plastics are recyclable, many products are made from multiple materials (e.g. phone is made from different plastics, metals and other materials such as silicon) Education required for the public in plastic recycling efforts.
Environmental	 Plastic production far exceeds recycling rates resulting in plastic landfills. Microplastics contamination cannot be eliminated with recycling efforts.