Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Important Keywords:

Keyword(s)	Definition							
Elements	Simplest form of substance that cannot be further broken down by chemical methods.							
Compounds	Substances that are formed by two or more elements chemically combined.							
Mixture	Substances that are physically mixed together.							
Atoms	The smallest particle of an element.							
Molecules	Formed when two elements are chemically combined.							
*Isotopes	Atoms with same number of and different number of							
Ions	Formed when atoms gain or lose electron(s)							
Relative Atomic								
Mass (A _r)	mass of an compared to							
Relative Molecular Mass (M _r)	mass of an compared to							
Nucleon Number	Total number of neutrons and protons in an atom.							
Valence Electrons	Electrons of atoms (or ions) at outermost shell.							
Metallic Character	Refers to the tendency to lose electrons to form positively charged cations.							

Subatomic Particles

	Relative Mass	Relative Charge	
Protons			
	1	0	
Electrons			

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Rate of Reaction

How to increase rate of reaction

Tempe	<u>rature</u>	
1.	Temperature	
2.	Kinetic energy of particles	
Concer	ntration of solution	
1.	Concentration	
2.	Amount of reactants per unit volume	
Size of	Particles (Solid Reactant)	
1.	Size of particles (powder form)	
2.	Surface area available for reaction	
Pressu	re of Gaseous Reactants	
1.	Pressure	
2.	Gaseous Reactants are closer together	
Catalys	st .	
1.	Presence of catalyst	
2.	Activation energy of reaction is lowered	
3.	More reactants achieve activation energy	
4.	Rate of reaction increases	

	Gas Collection Graph	Change of Mass Graph
Set-up		
General Understanding	Vol of Gas / cm³	Mass of Setup / g Time / minute

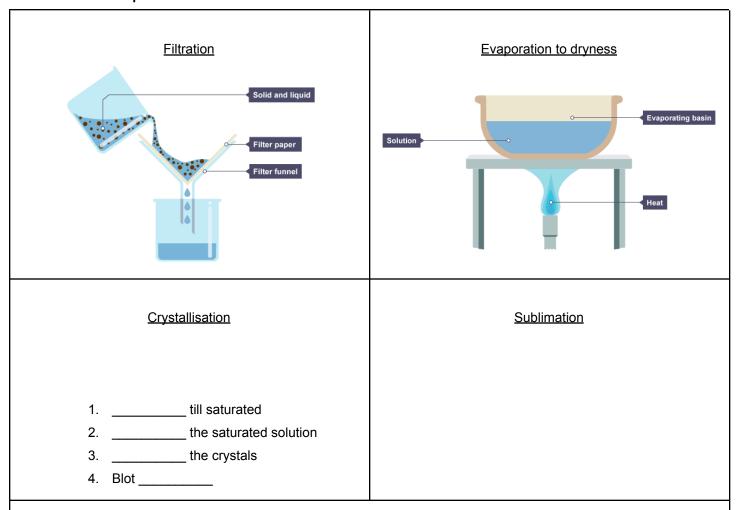
Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Graphical Effects of Factors on Speed of Reaction

Factors	Gas Collection Graph	Change of Mass Graph
Higher Temperature	↑ Vol of Gas / cm³	Mass of Setup / g
OR		
Smaller Solid		
Reactants	Time / minute	Time / minute
Double	* Vol of Gas / cm ³	Mass of Setup / g
Concentration		
Solution is limiting		
	Time / minute	Time / minute
Double Volume	[†] Vol of Gas / cm ³	
Solution is limiting		
	Time / minute	

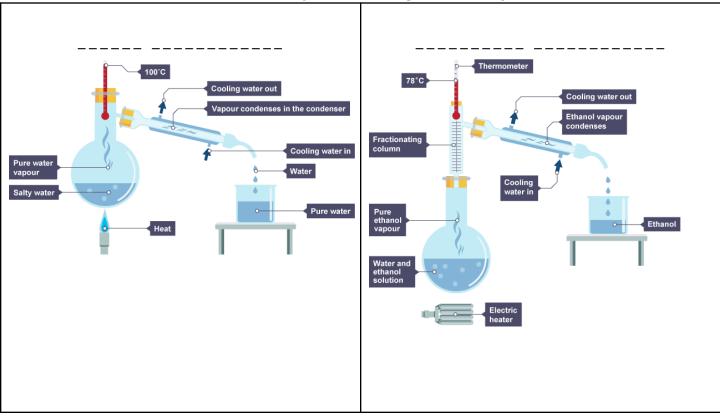


Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Purification Techniques


Chromatography

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Periodic Table

- Elements are arranged based on _____ number

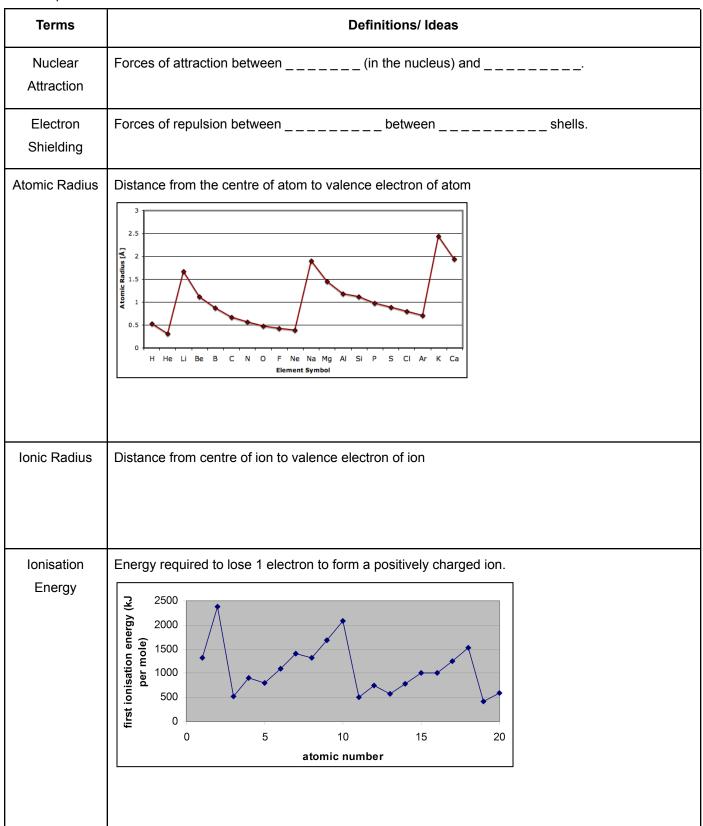
- Group represents the number of ______ electrons

- Period represents the number of ______ shells

	Group																
- 1	- 11											III	IV	V	VI	VII	0
							1.										2
							H hydrogen										He
				Key			1										4
3	4			(atomic) n								5	6	7	8	9	10
Li	Be		ato	omic sym	oal							В	C	N	0	F	Ne
lithium 7	beryllum 9		entation.	ve atomic	mass							toton 11	carbon 12	ntrogen 14	ceygen 16	fuorine 19	20
11	12		TOROU	ve alonile	Haloo	ı						13	14	15	16	17	18
Na	Mg											At	Si	P	S	ČI	Ar
sodium	magnesium											aluminium	silicon	phosphorus	sufur	chlorine	argon
23	24											27	28	31	32	35.5	40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K.	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium 39	delcium 40	scandium 45	stanium 48	vanedium 51	chromium 52	manganose 55	56	59	mickel 59	64	65	gallium 70	germanium 73	arsenic 75	solenium 79	bromine 80	krypton 84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	V	Zr	Nb	Mo	To	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium	strontium	yttium	zirconium	nichlum	molybdenum	technetium	ruthenium	modium	paladum	niver	cadmium	indium	\$n	antimony	tellurium	iodine	XBOOD
85	88	89	91	93	96	-	101	103	106	108	112	115	119	122	128	127	131
55	56	57 - 71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	tanhanoids	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tt.	Pb	Bi	Po	At	Rn
caesium	137		178	tentalum 181	tungsten 184	rhenium 186	190	192	platinum 195	197	mercury	thallum	lead	bismuth	polonium	astatine	radon
133 87	88	89 - 103									201	204	207	209	116	_	
Fr	Ra	actinoids	104 Rf	105 Db	106 Sq	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn		F/		Lv		
francium	radium		Ratherbellum	dubnium	seaborgium	bohrium	hassium	moltredum	dermetacitium				Serovium		Evernorium		
_	_		-	_	_	_	-	-	-	-	-		-		_		
te	nthanoid	8	57	58	58	60	61	62	63	64	65	66	67	68	69	70	71
-		_	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			lantharum 139	cetum 140	presentation 141	neodymium 144	promethium	150	europium 152	gadolinium 157	terblum 159	dysprosium 163	holmium 165	erbium 167	thulum 169	yterbium 173	lutetum 175
	actinoids		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	even ous		Ac	Th	Pa	ü	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			actinium	thotum	protectinium	uranium	noptunium	plutonium	americium	ourlum	borkelium	californium	einsteini um		mondolevium		lawrendum
			-	232	231	238	_	-	-	-	-	-	-	-	-	-	-

The volume of one mole of any gas is 24dm³ at room temperature and pressure (r.t.p.).

	Group I (metals)	Transition Metals	Group VII ()	Group 0 (Gases)
Properties	- Soft - Low Density - Other metallic properties	- Forms compounds - Have oxidation states - Used as	- - Forms covalent substances	-
Trends	- Density - Reactivity - Melting/Boiling point		DensityReactivityMelting/Boiling pointColour	



Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Other Important Ideas:

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Physical & Chemical Bonding

Metallic	lonic	Simple Covalent
X X Mg X X X	$2\left[\begin{array}{c}N_{a}\end{array}\right]^{+}\left[\begin{array}{c}X_{a}\\0\end{array}\right]^{2}$	H C C D H
+ + + + + + + + + + + + + + + + + + +		
Lattice structure Metal atoms surrounded by mobile electrons	Crystal lattice structure and ions are alternately positioned	Molecules are irregularly arranged, far apart from each other.
High melting & boiling point Strong metallic forces of attraction require a large amount of energy to overcome.	High melting & boiling point Strong forces of attraction requires amount of energy to overcome.	Low melting & boiling point
Conduct electricity in solid state Have mobile	Does not conduct electricity in solid Conducts electricity in liquid & aqueous state	Does not conduct electricity Exceptions:

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Allotropes of Carbon (Macromolecules)

Diamond	Graphite				
Structure:	Structure:				
1 structure	1layers				
Each carbon atom bonded to carbon atoms	Each carbon bonded to carbon atoms				
Strong covalent bonds between atoms	Strong covalent bonds between atoms				
5. Ottong covalent bonds between atoms	Weak intermolecular forces of attraction				
	between hexagonal layers				
Physical Properties:	Physical Properties:				
					
High melting & boiling point	High melting & boiling point				
Strong between atoms	Strong between atoms				
require large amount of energy to overcome.	require large amount of energy to overcome.				
Does not conduct electricity	Conducts electricity				
Does not have mobile	Have mobile between				
3. Hard	3. Soft & slippery				
When a force is applied, atoms are unable to slide	When a force is applied,				
across neighbouring atoms due to	slide across each other due to				
Use as tips for drills	Use to lubricate machineries				
ood do apo for dring	Electrodes for electrolysis				
	Licetiones in electrolysis				

Tel: 9225 5217 / 8892 8513

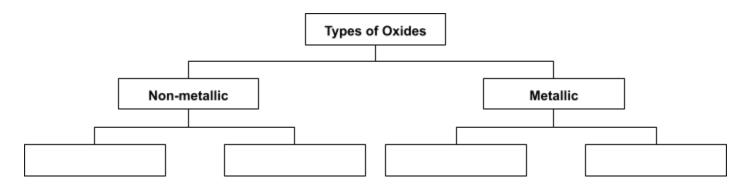
Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Acid & Base

	Acid		Base
Strong	Acid:	Strong	Alkali:
	in water to form hydrogen ions		in water to form hydroxide ions
Weak /	Acid: in water to form hydrogen ions	Weak A	Alkali: in water to form hydroxide ions
1.	Sour	1.	Bitter
2.	Corrosive	2.	Soapy feel
3.	Less than pH 7	3.	More than pH 7
4.	Turns blue litmus paper red	4.	Turns red litmus paper blue
1.	Reactive metal reacts with acid to form a salt and hydrogen gas.	1.	Reacts with ammonium compounds to release ammonia gas
2.	Metal oxide reacts with acid to form a salt and water	2.	Reacts with ionic compounds to form metal hydroxide
3.	Metal hydroxide reacts with acid to form a salt and water.		
4.	Metal carbonate reacts with acid to form salt, water and carbon dioxide.		

Common pH Indicators


рН	1	2	3	4	5	6	7	8	9	10	11	12	13
Methyl Orange		Red						Yello	W				
Phenolphthalein		Colourless									Pink		
Universal Indicators	Re	ed	Ora	nge	Yel	low	Green	Bl	Blue Violet		olet		

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Ammonia

Uses of ammonia:

Process	Reactions & Remarks	Conditions
Haber		
Process		

Related Questions:

- 1. Sources of raw materials for Haber process?
- 2. Why is it not recommended to use air $(78\% N_2)$ for Haber process?

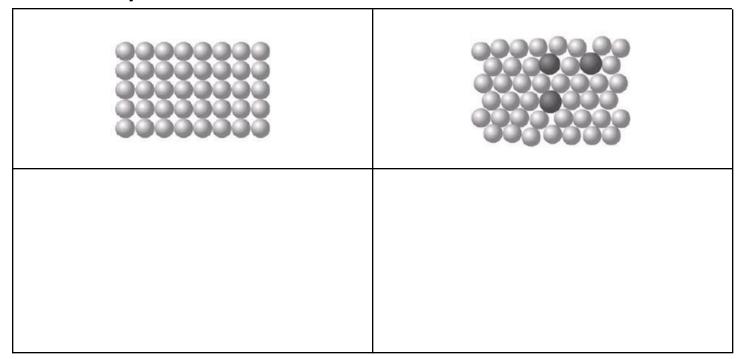
Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Salt Preparation

	Crystallisation	Precipitation	Titration
	To extract soluble salt (e.g. MgCI ₂)	To extract insoluble s (e.g. PbC <i>l</i> ₂)	alt To extract alkali salts (e.g. NaC/, NH₄NO₃)
1.	Add excess metal oxide (MgO) to acid (HC/)	Add metal nitrate (Pt to acid (HC/)	o(NO ₃) ₂) 1. Drop two drops of methyl orange into conical flask
2.	Filter away excess metal oxide	Filter the mixture Wash the residue (R)	2. Fill the conical flask with 25.0 cm³ acid using a pipette
3.	Heat the filtrate till saturated	Wash the residue (P distilled water	3. Fill burette with alkali and note initial reading (V ₀ cm ³)
4. 5.	Cool the saturated solution Filter the crystals	4. Blot dry	Add alkali dropwise until change of colour is observed
6.	Blot dry		in solution of conical flask (endpoint). Note final reading (V ₁ cm ³)
			5. Volume of alkali required is (V_0-V_1) cm ³
			6. Repeat steps 2 to 4 with (V_0-V_1) cm ³ of alkali.



Tel: 9225 5217 / 8892 8513

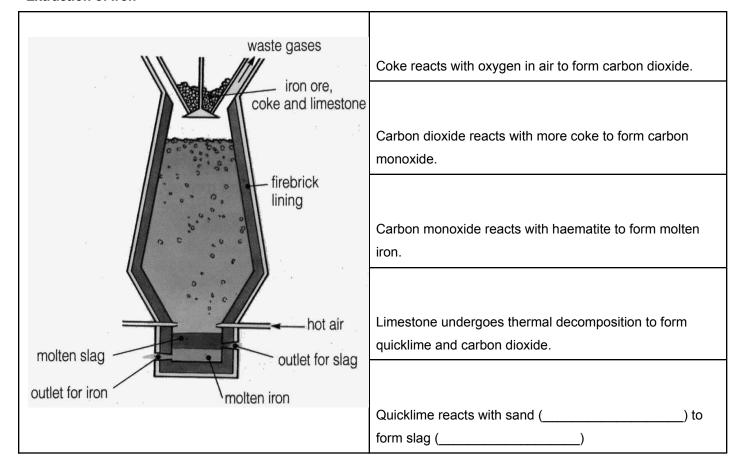
Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Pure Metals & Alloys

Reactivity Series of Metals

	Reaction with	Reaction with	Reaction with	Extraction Method
	cold water	steam	dilute acid	
Potassium				
Sodium				
Calcium				
Magnesium				
Aluminium				
Zinc				
Iron				
Lead				
Copper				
Silver				



Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Extraction of Iron

Protection of Iron

Coating	Sacrificial Protection
Prevents iron from coming into contact with	Attach more reactive metal
·	
	·

Reasons for Recycling of Metals

- 1. Metals are finite resources
- 2. Cheaper
- 3. Causes less pollution
- 4. Uses less energy

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Oxidation states:

		Examples	
As an element , the oxidation state is always zero.	Oxidation stat	e of N in N ₂ :	
	Oxidation stat	e of iron in Fe:	
When reacted, alkali metals (group I) will have an	Oxidation stat	e of sodium in Na in NaC/:	
oxidation state of +1.			
Group II metals will have oxidation state of +2	Oxidation stat	e of magnesium in MgSO ₄	:
The oxidation state of <u>hydrogen</u> depends on its			
partner.	Туре	Examples	Oxidation state
	Metal	NaH, MgH ₂	
	Non-metal	NH ₃ , H ₂ O ₂ , NaOH	
To know the state of oxygen, take note of its name of			
the anions.			1
the unions.	Anion Nam	e Examples	Oxidation state
	Oxide	Na₂O, NaOH	-2
	Peroxide		
	Superoxide		
		•	

Redox Reaction

Reduction	Oxidation	Equations
1. Oxygen	1. Oxygen	
2. Oxidation state	2. Oxidation state	
3. Hydrogen	3. Hydrogen	
4. Electrons	4. Electrons	
Common oxidising agents:	Common reducing agents:	
1. Potassium manganate (VII)	1. Potassium iodide	
2. Potassium dichromate (VI)	2. Reactive metals	

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Energy Change

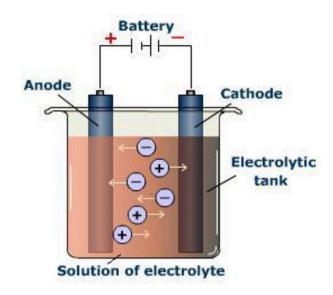
Exothermic Reaction	Endothern	nic Reaction
energy is from both	forming than energy	from bond from bond
breaking.	breaking.	
		•
Physical Processes:		
Freezing, condensation		
Chemical Processes: Neutralisation Burning/ Combustion Respiration		

Transition Metals as Catalyst:

Transition metals are metals with the following proper	erties:
1.	
2.	
3.	
Catalyst speeds up reactions without	changing itself at the end of the reaction.

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com


Pure Chemistry Intensive: Inorganic Chemistry

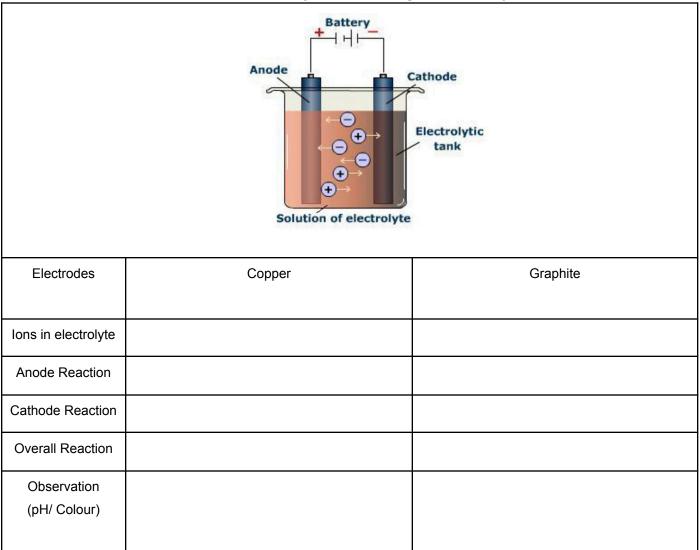
Electrolysis

lm	por	tant	No	tes:
----	-----	------	----	------

- 1. Inert electrodes:
- 2. Discharging of Cations:
- 3. Discharging of Anions
 - Diluted solution
 - Concentrated halide solution

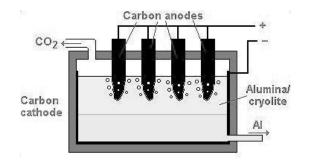
Electrolytic Cell (Inert electrodes):

Electrolyte	Concentrated sodium chloride solution	Diluted sodium chloride solution
lons in electrolyte		
Anode Reaction		
Cathode Reaction		
Overall Reaction		
Observation (pH/ Colour)		


Copper Plating (CuSO₄ electrolyte):

Tel: 9225 5217 / 8892 8513

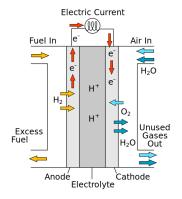
Email: tuitionclass.primz@gmail.com


Pure Chemistry Intensive: Inorganic Chemistry

Application: Extraction of Reactive Metal (Aluminium)

Melting point of aluminium oxide (bauxite): 2000 °C

Melting point of cryolite (Na₃A/F₆): 1000 °C



Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Simple Cell:		
Electrolyte	**Concentrated sodium chloride	Dilute iron (II) nitrate
	(Copper and silver electrodes)	(Aluminium, iron electrodes)
lons in electrolyte		
Anode Reaction		
Cathode Reaction		
Overall Reaction		
Observation (pH/ Colour)		

Application: Hydrogen Fuel Cell

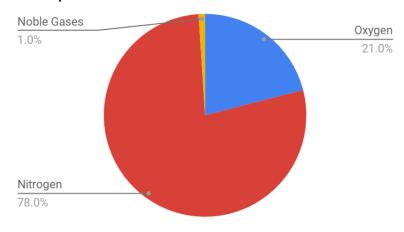
Electrolyte: KOH

Anode (Half Equation): $2H_2 + 4OH^- \rightarrow 4H_2O + 2e^-$ Cathode (Half Equation): $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$

Overall Equation: _

Advantage: Products (water) does not pollute the environment.

Disadvantage: Process of obtaining raw materials (H₂) pollutes the environment.


Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Atmosphere

Composition of Air

I. Atmosphere & Air

Air Pollutants	Sources	Effects
Oxides of nitrogen		Forms acid rain which affects pH of soil and water bodies
		resulting in death of plants and marine organisms.
		Throat irritation & airway inflammation.
Sulfur dioxide		Forms acid rain which affects pH of soil and water bodies
		resulting in death of plants and marine organisms.
		Throat irritation & airway inflammation.
Carbon monoxide		Reacts with haemoglobin in blood to reduce transportation in
		human body.
Methane	Decay of organic matter	Greenhouse gas that results in global warming.
Unburnt hydrocarbon		Carcinogenic.
		Reacts with ozone to form photochemical smog.
Ozone		Throat irritation & airway inflammation.
		Reacts with unburnt hydrocarbon to form photochemical
		smog.
Carbon Dioxide		Greenhouse gas that results in global warming.

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Ways of reducing air pollution:

Catalytic	Problems of vehicle exhausts:	To muffler
Converter	- High temperature forms oxides of nitrogen	Exterior
	- Incomplete combustion of fuel	
	Features of catalytic converter:	Oxidation catalyst
	Honey-combed structure	Reduction catalyst From engine Honeycomb or beads
	Platinum and rhodium catalyst	
	Reactions that occur in catalytic converter:	
	Oxides of nitrogen reacts with carbon mone	oxide
	Complete combustion of soot, unburnt hyd	rocarbons & carbon monoxide
	Advantages	Limitations
	Advantages Harmful pollutants such as oxides of nitrogen, carbon monoxide and unburnt hydrocarbon is reduced.	Limitations Unable to reduce sulfur dioxide or carbon dioxide content.
Flue Gas	Harmful pollutants such as oxides of nitrogen, carbon monoxide and unburnt hydrocarbon is reduced.	Unable to reduce sulfur dioxide or carbon
Flue Gas Desulfurisation	Harmful pollutants such as oxides of nitrogen, carbon monoxide and unburnt hydrocarbon is	Unable to reduce sulfur dioxide or carbon
Flue Gas Desulfurisation (FGD)	Harmful pollutants such as oxides of nitrogen, carbon monoxide and unburnt hydrocarbon is reduced.	Unable to reduce sulfur dioxide or carbon
Desulfurisation	Harmful pollutants such as oxides of nitrogen, carbon monoxide and unburnt hydrocarbon is reduced.	Unable to reduce sulfur dioxide or carbon
Desulfurisation	Harmful pollutants such as oxides of nitrogen, carbon monoxide and unburnt hydrocarbon is reduced.	Unable to reduce sulfur dioxide or carbon
Desulfurisation	Harmful pollutants such as oxides of nitrogen, carbon monoxide and unburnt hydrocarbon is reduced.	Unable to reduce sulfur dioxide or carbon
Desulfurisation	Harmful pollutants such as oxides of nitrogen, carbon monoxide and unburnt hydrocarbon is reduced.	Unable to reduce sulfur dioxide or carbon

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Carbon Footprint:

The amount of carbon dioxide released into the atmosphere as a result of human activities.

- Using ethanol (biofuel) instead of fossil fuels

Production of ethanol from plants involves <u>photosynthesis</u> which <u>removes carbon dioxide</u> from the atmosphere. Since the amount of carbon dioxide absorbed is equal to its release, fuel is considered carbon neutral.

Limitations of carbon-neutral fuels:

Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

List of Common Reactions

Reaction	Remarks	Example Equation
Dissociation	Occurs when acid is dissolved in water. H ⁺ ions produced.	HCl → H ⁺ + Cl ⁻
Neutralisation	Acid reacts with base to form salt	$H^{+} + OH^{-} \rightarrow H_{2}O$ $2H^{+} + O^{2-} \rightarrow H_{2}O$ $2H^{+} + CO_{3}^{2-} \rightarrow CO_{2} + H_{2}O$
Haber Process	Process to produce ammonia. (250 atm., 450°C, finely divided iron catalyst)	N ₂ + 3H ₂ 2NH ₃
Precipitation	Reaction that produces precipitate.	$Ca(OH)_2 + H_2SO_4 \rightarrow CaSO_4 + 2H_2O$
Titration	Reaction occurs for SPA salts (sodium, potassium and ammonium salts)	$2KOH + H_2SO_4 \to K_2SO_4 + 2H_2O$
Displacement	Occurs when a more reactive element displaces the less reactive element from its compound.	$Zn + Cu^{2+} \rightarrow Cu + Zn^{2+}$ $Cl_2 + 2KI \rightarrow 2KCI + l_2$
Ionisation	Compound (dissolves in water) to form ions.	Na → Na ⁺ + e ⁻
Redox	Occurs when the factors below happen: 1. Number of oxygen atoms changes 2. Number of hydrogen atoms changes 3. Number of electrons changes 4. Oxidation state changes	$C + O_2 \rightarrow CO_2$ $Mg + Cu^{2+} \rightarrow Cu + Mg^{2+}$
Combustion/ Burning	Substance reacts with oxygen and a flame is observed.	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
Rusting	When iron oxidises to form rust (Fe ₂ O ₃)	$4\text{Fe} + 3\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3$
Thermal Decomposition	Substance breaks into simpler substances in the presence of heat.	$CaCO_3 \rightarrow CaO + CO_2$
Exothermic	Heat is released, temperature increases. (Energy released for bond forming greater than energy absorbed for bond breaking)	$C + O_2 \rightarrow CO_2$
Endothermic	Heat is absorbed, temperature decreases.	$CaCO_3 \rightarrow CaO + CO_2$

Address: Primz Bizhub Tel: 9225 5217 / 8892 8513

Email: tuitionclass.primz@gmail.com

Pure Chemistry Intensive: Inorganic Chemistry

Electrolysis	Discharging of ions from electrolytes using electricity.	Refer to the electrolysis chapter.
Photosynthesis	Occurs in the presence of chlorophyll. Light is required to activate the reaction. (Endothermic)	$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$
Respiration	Reverse process of photosynthesis, similar to oxidation. (Exothermic)	$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$
Flue Gas Desulfurisation	Removal of sulfur/ sulfur dioxide from gas exhaust. (Neutralisation)	$SO_2 + CaCO_3 \rightarrow CaSO_3 + CO_2$ $2CaSO_3 + O_2 \rightarrow 2CaSO_4$